WOLFSON UNIT

FOR MARINE TECHNOLOGY AND INDUSTRIAL AERODYNAMICS

University of Southampton Southampton, SO16 7QF, UK

Tel: +44 (0)23 8059 5044

Email: wumtia@soton.ac.uk Web: www.wumtia.com

Report No. 2857

Date : March 2022 Compiled By : MS Verified By : AMW

# Lloyd's Register Foundation

## Stress Tests on the Wolfson Stability Method for Small Fishing Vessels Small Grant Final Report Sg4\100045

#### **1 INTRODUCTION**

The Wolfson Stability Method adopted in the 2021 UK Code of Practice for Small Fishing Vessels (Merchant Shipping Notice 1871 Amendment 2) enables fishermen to assess the limits for operating their own boats safely. The Method relies on vessel capsize tests at model scale and selected UK casualty data up to 2012.

This report presents an expanded vessel casualty database obtained from a review of accident investigation reports worldwide, and its use for stress testing the Wolfson Stability Method. This work was commissioned on 9<sup>th</sup> December, 2021 by Dean Cassar representing Lloyd's Register Foundation (LRF), following Small Grant application ref. Sg4/100045 dated 1<sup>st</sup> November, 2021.

#### 2 LIST OF ABBREVIATIONS AND ACRONYMS

#### **Marine Accident Investigation Bodies**

| ATSB                | Australian Transport Safety Bureau                                  |  |  |  |  |  |  |  |
|---------------------|---------------------------------------------------------------------|--|--|--|--|--|--|--|
| DMAIB               | Danish Maritime Accident Investigation Board                        |  |  |  |  |  |  |  |
| EMCIP               | European Marine Casualty Information Platform                       |  |  |  |  |  |  |  |
| FEBIMA              | Federal Bureau for the Investigation of Maritime Accidents, Belgium |  |  |  |  |  |  |  |
| GAMA                | Gabinete de Investigação de Acidentes Marítimos                     |  |  |  |  |  |  |  |
| IoM SR              | Isle of Man Shipping Registry                                       |  |  |  |  |  |  |  |
| MAIB                | Marine Accident Investigation Branch, UK                            |  |  |  |  |  |  |  |
| MCA                 | Maritime and Coastguard Agency, UK                                  |  |  |  |  |  |  |  |
| MCIB                | Marine Casualty Investigation Board, Ireland                        |  |  |  |  |  |  |  |
| SHK                 | Statens Haverikommission, Sweden                                    |  |  |  |  |  |  |  |
| TAIC                | Transport Accident Investigation Commission, New Zealand            |  |  |  |  |  |  |  |
| TSB                 | Transportation Safety Board of Canada                               |  |  |  |  |  |  |  |
| Other Abbreviations |                                                                     |  |  |  |  |  |  |  |
| В                   | Beam Overall, metres                                                |  |  |  |  |  |  |  |
| Δ                   | Displacement, tonnes                                                |  |  |  |  |  |  |  |
| $GZ_{max}$          | Residual Righting Lever, metres                                     |  |  |  |  |  |  |  |
| Hs                  | Significant Wave Height, metres                                     |  |  |  |  |  |  |  |
| H <sub>crit</sub>   | Critical Wave Height to Capsize                                     |  |  |  |  |  |  |  |
| LR                  | Registered Length, metres                                           |  |  |  |  |  |  |  |
| L                   | Length Overall, metres                                              |  |  |  |  |  |  |  |
| Range               | Range of Positive Residual Stability, degrees                       |  |  |  |  |  |  |  |
| $RM_{max}$          | Maximum Residual Righting Moment, tonne.metres                      |  |  |  |  |  |  |  |



## **3 BACKGROUND**

On 6/9/2021 the new UK Code of Practice (CoP) for the Safety of Small Fishing Vessels came into force. The CoP regulates new and existing fishing vessels less than 15m length overall and introduces new requirements that are intended to reduce the high rate of fatalities in the fishing industry, approximately 100 times higher than that of the UK general workforce.

OR MARINE TECHNOLOGY AND INDUSTRIAL

With regard to vessel stability and freeboard, the CoP implements key Marine Accident Investigation Branch recommendations such as 2016/30 (F/V JMT) '...all existing vessels of under 15m to be marked using the Wolfson Method or assessed by use of another acceptable method'. Crucially, the CoP states that 'all vessels not required to hold a Stability Information Book must have a Wolfson Stability Notice posted on board the vessel, which gives information on the loading of the vessel and its effect on stability'. This new requirement applies to nearly all fishing vessels under 12m RL and to pre-2017 fishing vessels between 12m Registered Length and 15m Overall Length.

A simple online tool available at http://www.wolfsonunit.com/services/vessel-safety enables fishermen to produce a Wolfson Stability Notice and associated Freeboard Mark at no cost, based solely on the length and beam of their own boat. The Notice contains vessel-specific lifting and loading limits in relation to the prevailing seastate and conveys them via a simple traffic lights system. The Freeboard Mark enables fishermen to assess the current level of safety of their own vessel whilst in operation.

#### 4 SCOPE OF WORK

The Wolfson Stability Method, formulated in 2004-06, stems from model capsize tests on high-speed craft hull forms [1]. Subsequently, additional model test data and documented vessel capsizes confirmed the predicted area of safe operation, [2] and [3]. These data are shown in Figure 1 and are referred to as 'STAB 2012' casualties in this report.

The critical wave height to capsize proposed in [3] is:

$$Critical Wave Height = \frac{Range\sqrt{RMmax}}{10B}$$
(1)

Eqn. 1 represents the minimum wave height to capsize a vessel of beam B with known residual stability characteristics. Eqn. 1 normalised by overall length is referred to as 'Wolfson Formula' that is, the solid black line of Figures 1 and 2 which separates the safe zone of the plot (vessel expected to be safe from capsize) from the unsafe zone (vessel vulnerable to capsize). The STAB 2012 casualties fall either within the unsafe zone of the plot or on the critical line, which supports the Wolfson Method.

Fifteen years after its formulation, it was deemed appropriate to stress test the Method by adding further UK and international vessel casualties to the database, to confirm or adjust the extents of the safe zone of Fig. 1.

## 5 EXTENSION OF THE WOLFSON CASUALTY DATABASE

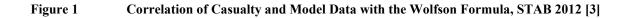
A capsize event is suitable for the Wolfson casualty database if its loss condition and probable wave height at the time of the accident can be estimated with reasonable accuracy. For documented vessel capsizes, this information was obtained from accident investigation reports and additional documents, including Fatal Accident Inquiry reports (Scottish Courts), Coroners' Inquest reports (England and Wales), vessel stability reports compiled by independent consultants, model test reports and computer stability models, where available.

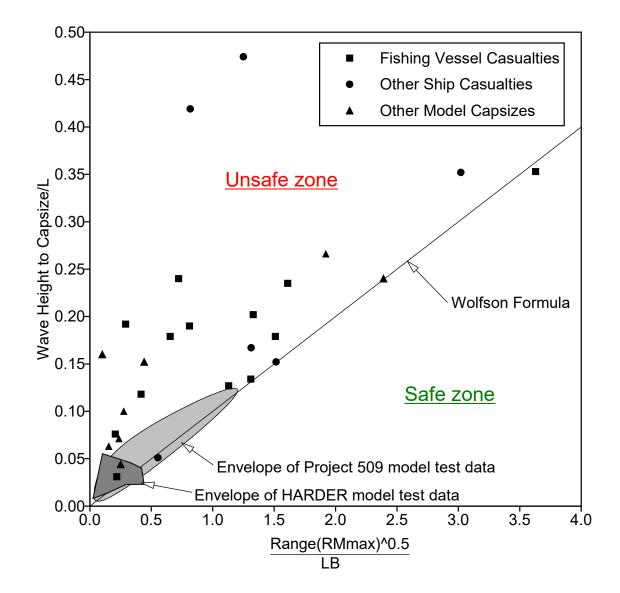
2403 published marine accident investigation reports from 10 marine investigation bodies worldwide were considered for this study. Some national (ATSB, DMAIB) and international (EMCIP) databases enabled

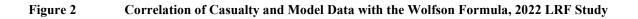
filtering by event type, hence capsize/listing and flooding/sinking events were searched. Other accident databases enabled keyword searches, therefore a wider range of keywords was used, including 'loss', 'stability', 'foundering' and 'downflooding'.

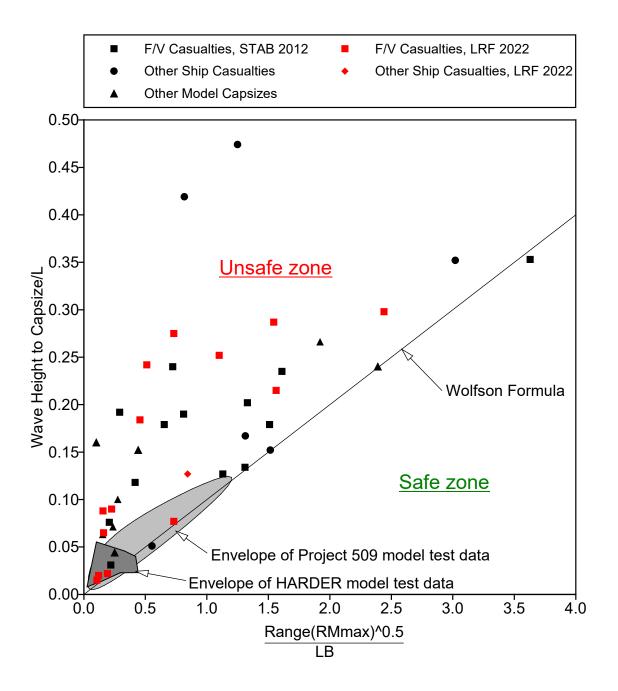
WOLFSON U

268 vessel casualties were identified, whose reports were examined to assess the exact nature of the accident and the data provided. Vessel losses not related to stability (e.g. catastrophic hull failures, groundings and tug girthing events) were filtered out, as were those presenting minimal stability information, unreliable weather data and/or inconclusive findings. As a result, 25 new casualties were deemed suitable for the Wolfson stability database which are 16 fully documented casualties (all fishing vessels bar 1 passenger vessel) and 8 casualties with incomplete stability data. The missing data has been requested but had not been made available at the time of writing this report.


Initially, selected STAB 2012 casualties were re-analysed to ensure consistency between the 2006, the 2012 and the 2022 analysis. Minor inconsistencies were found in the derivation of the probable wave height at the time of the accident from the published sea state data, so the relevant STAB 2012 points were adjusted as appropriate. Subsequently, the new casualties were analysed and assessed against the Wolfson formula. Table 2 presents the new Wolfson casualty database and Figure 2 provides the result of the analysis.


## 6 CONCLUSIONS


- 6.1 The Wolfson casualty database was extended from 13 to 30 casualties, and now encompasses a wide range of hull forms, hull dimensions, methods of fishing and loading conditions. In addition, 8 partially documented casualties were identified and the missing data requested to the relevant accident investigation bodies.
- 6.2 All the new capsize events, designated in Figure 2 as 'LRF 2022' fall on the Wolfson line or to the unsafe side of it. This supports the current formulation of the Wolfson Method, as adopted in the new UK Code of Practice.
- 6.3 An efficient method for reviewing and analysing marine accident investigation reports has now been established. This will enable adding future casualties efficiently, as well as existing documented casualties from additional accident investigation bodies.
- 6.4 More than 200 fishing vessel accident investigation reports were reviewed. This exercise, as expected, highlighted common themes as to what causes capsizes and fatalities, namely:
  - weight growth and centre of gravity upward shift over time, resulting in loss of residual stability;
  - vessel overloading, resulting in loss of residual freeboard;
  - gaps in the regulation or inspection regime, hence undetected deterioration of the vessel stability;
  - installation of winches and lifting equipment powerful enough to capsize the vessel;
  - financial pressure, resulting in risk-taking behaviour, crew fatigue and poor vessel maintenance;
  - deficient water freeing arrangements, causing water trapped on deck in heavy seastates;
  - lack of safety training/awareness resulting in poor safety standards onboard, eg. limited use and/or poor maintenance of Personal Flotation Devices (PFDs), Personal Locator Beacons (PLBs), Emergency Position Indicating Radio Beacons (EPIRBs), liferafts and bilge pumps.


## 7 **REFERENCES**

- 1. Deakin, B., 2006, "Loading Guidance for Fishing Vessels Less than 12m Registered Length", Maritime & Coastguard Agency Research Project 559 Phase II, Final Report No. 1903/2, Wolfson Unit MTIA. Available at http://www.wumtia.soton.ac.uk/about-us/published-papers/stability-and-loading-guidance-fishermen as of 31st March, 2022.
- 2. Deakin, B., 2010, "Collating Evidence for a Universal Method of Stability Assessment or Guidance", Trans RINA, Vol. 152, Part A2, International Journal of Maritime Engineering.
- 3. Deakin, B., 2012, "Spend Less, Save More (Lives)", Proc. of the 11<sup>th</sup> International Conference on the Stability of Ships and Ocean Vehicles (STAB 2012), Athens, Greece.











|                     |               |                          | Vessel Casualties |                |                 |  |  |  |  |
|---------------------|---------------|--------------------------|-------------------|----------------|-----------------|--|--|--|--|
|                     | Total Reports | Flooding/Stability       | Published         | New            | Additional Data |  |  |  |  |
|                     | Available     | <b>Reports Evaluated</b> | STAB 2012 [3]     | 2022 LRF Study | Requested       |  |  |  |  |
| Australia, ATSB     | 370           | 6                        |                   | 1              |                 |  |  |  |  |
| Belgium, FEBIMA     | 22            | 4                        |                   | 2              |                 |  |  |  |  |
| Canada, TSB         | 526           | 38                       | 1                 |                | 1               |  |  |  |  |
| Denmark, DMAIB      | 124           | 25                       |                   |                |                 |  |  |  |  |
| Ireland, MCIB       | 251           | 24                       | 1                 | 2              |                 |  |  |  |  |
| Isle of Man, IoM SR | 38            | 3                        | 1                 |                | 1               |  |  |  |  |
| Portugal, GAMA      | 84            | 15                       |                   |                |                 |  |  |  |  |
| New Zealand, TAIC   | 238           | 6                        |                   | 1              |                 |  |  |  |  |
| Sweden, SHK         | 97            | 4                        | 1                 |                | 3               |  |  |  |  |
| UK, MAIB            | 653           | 143                      | 9                 | 11             | 3               |  |  |  |  |
| TOTAL               | 2403          | 268                      | 13                | 17             | 8               |  |  |  |  |

# Table 1 Marine Accident Investigation Reports Available and Casualties Evaluated

#### Table 2Wolfson Casualty Database

| Boat PLN                  |                                               | LN Gear                   | Source                | LOA   | BOA   | Depth | Draught | Min F   | Disp   | KG    | GM    | List  | Downflood | GZmax | GZarea30 | GZareaf | GZarea | AVS  | Range |  |
|---------------------------|-----------------------------------------------|---------------------------|-----------------------|-------|-------|-------|---------|---------|--------|-------|-------|-------|-----------|-------|----------|---------|--------|------|-------|--|
|                           |                                               |                           | Source                | m     | m     | m     | m       | m       | t      | m     | m     | deg   | deg       | m     | m.rad    | m.rad   | m.rad  | deg  | deg   |  |
| Amber Rose + flooding     |                                               | Pair trawler              | MAIB report 24/2000   | 26.33 | 7.46  | 3.3   | 2 4.25  | 5 0.06  | 423.8  | 3.595 | 0.190 | 0.    | 0         | 0.016 | 0.003    | 3       | 0.003  | 14.0 | 14.01 |  |
| Angela no shelter         |                                               | Twin rig trawler          | MAIB report           | 16.99 | 6.10  | 2.9   | 7 2.88  | 3 0.37  | 116.2  | 3.701 | 0.416 | 5 8.  | 7         | 0.039 | 0.006    | 5       | 0.006  | 29.0 | 20.27 |  |
| Charisma                  |                                               | Trawler (mussel dredger)  | MAIB report           | 10.66 | 4.00  | 2.1   | 2 2.11  | L 0.35  | 34.7   | 2.334 | 0.328 | 3 0.  | 0 20.1    | 0.048 | 0.012    | 0.012   | 0.012  | 23.0 | 23.00 |  |
| Amber with rock           |                                               | Trawler                   | MAIB report           | 9.98  | 3.40  | 1.7   | 4 1.47  | 7 0.14  | 19.0   | 1.845 | 0.150 | 9 4.  | 0         | 0.005 | 0.003    | 0.003   | 0.003  | 10.0 | 6.00  |  |
| Gorah Lass                |                                               | Netter                    | MAIB report           | 8.23  | 2.90  | 1.2   | 8 1.05  | 5 0.23  | 9.1    | 1.286 | 0.55  | 1 0.  | 0 20.8    | 0.106 | 0.039    | 0.027   | 0.045  | 41.0 | 41.00 |  |
| Kirsteen Anne             |                                               | Potter                    | MAIB report           | 6.50  | 2.20  | 1.1   | 5 1.04  | 0.11    | 4.5    | 1.260 | 0.335 | 5 0.  | 0 13.0    | 0.032 | 0.007    | 0.005   | 0.007  | 21.7 | 21.73 |  |
| Sapphire + flooding       |                                               | Trawler                   | MAIB report           | 21.95 | 7.01  | 3.9   | 8 3.61  | L 0.33  | 263.7  | 3.710 | 0.430 | 0.    | 0 17.8    | 0.095 | 0.027    | 0.018   | 0.030  | 31.0 | 31.00 |  |
| Tetsuko                   |                                               | Scallop dredger           | IOM Casualty Report 8 | 8.98  | 3.05  | 1.0   | 4       | 0.10    | )      |       |       |       |           |       |          |         |        |      |       |  |
| Donna M                   |                                               | Potter                    | MAIB report           | 8.80  | 2.86  | 1.4   | 1       | 0.03    |        |       |       |       |           |       |          |         |        |      |       |  |
| Sundance                  |                                               | Trawler                   | MAIB report           | 9.07  | 3.20  |       |         | -0.10   | )      |       |       |       |           |       |          |         |        |      |       |  |
| Margaretha Maria          |                                               | Beam trawler              | MAIB report           | 22.80 | 5.82  | 2.7   | 0 2.38  | 3 0.31  |        |       | 0.18  | 7 0.  | 0 23.0    | 0.023 | 0.004    | 0.004   | 0.004  | 16.0 | 16.00 |  |
| Harvest Hope              |                                               | Twin rig trawler          | MAIB                  | 28.23 | 8.70  | 7.4   | 0       |         |        |       |       |       |           |       |          |         |        |      |       |  |
| Glittsjo                  |                                               | Trawler                   | Sweden                | 14.05 | 5.00  | 2.5   | 7 2.42  | 0.15    | 54.9   | 2.780 | 0.290 | 0.    | 0.0       | 0.043 | 0.011    | L       | 0.011  |      | 23.00 |  |
| Orion                     |                                               | Mussel dredger            | MAIB                  | 26.89 | 4.53  | 2.4   | 5       |         |        |       |       |       |           |       |          |         |        |      |       |  |
| Meridian                  | KY147                                         | Pair Trawler              | MAIB 20/2007          | 22.66 | 6.79  | 3.4   | 7 2.63  | 3 1.07  | 139.6  | 3.005 | 1.25  | 5 0.  | 0         | 0.422 | 0.141    | L       | 0.141  | 72.5 | 72.53 |  |
| Trident (MARIN model)     | PD111m                                        | Seine-net trawler         | MARIN                 | 25.91 | 6.86  |       |         |         | 170.0  |       |       | 0.    | 0         | 0.250 |          |         |        |      | 52.00 |  |
| Trident (2011 Rehearing)  | PD111                                         | Seine-net trawler         | MAIB                  | 25.91 | 6.86  | 3.3   | 5       |         | 170.0  |       |       | 0.    | 0         | 0.210 |          |         |        |      | 48.00 |  |
| Trident (1976 NMI report) | PD111                                         | Seine-net trawler         | NMI / MAIB            | 25.91 | 6.86  | 3.3   | 5 2.48  | 3       | 167.6  | 3.161 | 0.732 | 2 0.  | 0.0       | 0.210 | 0.075    | 5       | 0.075  | 45.0 | 45.00 |  |
| Alize                     | WD207                                         | Scallop dredger           | MCIB/297              | 11.61 | 5.22  | 3.0   | 2 2.78  | 3 0.60  | 59.0   | 3.273 | 0.26  | 5 0.  | 0         | 0.095 |          |         |        | 40.0 | 40.00 |  |
| Nancy Glen                | TT100                                         | Twin rigged prawn trawler | MAIB 6/2019           | 12.98 | 5.10  | 2.0   | 0       |         | 71.4   |       | 0.232 | 2 5.  | 0         | 0.045 |          |         |        | 32.0 | 27.00 |  |
| Ocean Way                 | FR349                                         | Twin rigged stern trawler | MAIB 23/2015          | 17.07 | 5.67  | 1.9   | 8 2.57  | 7 -0.05 | 118.8  | 3.420 | 0.400 | ) 11. | 7 45.9    | 0.040 |          |         |        | 44.1 | 32.44 |  |
| JMT                       | M99                                           | Scallop dredger           | MAIB 15/2016          | 11.42 | 4.38  | 2.8   | 9 1.15  | 5 0.22  | 44.0   | 1.478 | 0.04  | 1 2.  | 9 45.8    | 0.008 | 0.001    | 0.001   | 0.001  | 16.0 | 13.14 |  |
| Stella Maris              | HL705                                         | Stern Trawler             | MAIB 29/2015          | 9.96  | 4.09  | 2.1   | 5 1.79  | 0.07    | 28.7   | 2.245 | 0.26  | 5 8.  | 4 22.6    | 0.010 |          |         |        | 17.5 | 9.07  |  |
| Aquila                    | BA379                                         | Scallop dredger           | MAIB 5/2010           | 13.41 | 5.16  | 2.5   | 6 2.20  | 0.41    | . 75.7 | 2.278 | 0.653 | 3 -2. | 5 40.1    | 0.208 | 0.079    | 0.107   | 0.107  | 40.1 | 42.55 |  |
| Heather Anne              | FY126                                         | Ring netter               | MAIB 2/2013           | 11.05 | 4.21  | 2.0   | 2 1.82  | 2 0.13  | 38.5   | 2.050 | 0.192 | 2 1.  | 8 34.7    | 0.016 | 0.002    | 0.002   | 0.002  | 15.1 | 13.31 |  |
| Sally Jane (1998 capsize) | SM74                                          | Twin beam & stern trawler | MAIB                  | 13.60 | 4.86  | 2.1   | 0       |         | 63.2   | 2.254 |       | 12.   | 3 90.0    | 0.008 |          |         |        | 22.2 | 9.89  |  |
| Sally Jane (2013 capsize) | SM74                                          | Twin beam & stern trawler | MAIB 21/2014          | 13.60 | 4.86  | 2.1   | 0       |         | 67.7   | 2.250 | )     | 12.   | 8 40.8    | 0.026 |          |         |        | 35.5 | 22.72 |  |
| Catrina                   | rina NN194 Stern trawler/twin beam scall MAIB |                           | II MAIB               | 13.92 | 4.84  | 2.1   | 2 1.59  | )       | 46.7   | 1.946 | 0.869 | 9 0.  | 0 33.0    | 0.213 | 0.082    | 0.090   | 0.082  | 33.0 | 33.00 |  |
| Pamela S                  | IH308                                         | Whelk potter              | MAIB                  | 9.16  | 2.86  | 1.6   | 9 1.45  | -0.03   | 9.6    | 1.758 | 0.29  | 7 0.  | 0 1.8     | 0.019 |          |         |        | 11.7 | 11.74 |  |
| Rising Sun                | WD209                                         | Potter & Stern Trawler    | MCIB/118              | 8.29  | 3.41  | 1.3   | 7       | 0.18    | 15.1   | 1.820 | 0.45  | 5 0.  | 0         | 0.057 | 0.014    | 0.014   | 0.014  | 22.0 | 22.00 |  |
| Maggie B                  | WD113                                         | Beam Trawler              | MCIB/122              | 15.72 | 5.18  | 3.3   | 3       | 1       | 83.3   | 2.720 | 0.834 | 4 0.  | 0         | 0.025 | 0.006    | 5       | 0.006  | 41.1 | 28.90 |  |
| Easy Rider                | 2213                                          | Potter                    | TAIC MO-2012-201      | 11.00 | 3.76  |       | 1.58    | 3 0.00  | 27.4   | 1.890 | 0.340 | 2     | 4.0       | 0.040 | 0.009    | )       | 0.009  | 20.0 | 20.00 |  |
| MV Rabaul Queen           | 121187                                        | Pax Vessel                | ATSB MT-2012-003      | 47.34 | 8.20  |       | 2.18    | 3       | 381.0  |       |       |       |           | 0.230 | 1        |         |        | 1    | 35.00 |  |
| Sonja                     | Z19                                           | Beam Trawler              | FEBIMA 2018/001228    | 30.70 | 7.27  | 3.6   | 2 2.83  | 3       | 242.7  | 3.655 | 0.30  | 1 17. | 7 >70     | 0.046 | 0.005    | 0.005   | 0.005  | 28.4 | 10.74 |  |
| Morgenster                | Z85                                           | Beam Trawler              | FEBIMA 07/2015        | 23.82 | 6.00  |       | 2.13    | -0.38   |        |       | 0.850 | 18.   | 6 69.3    | 0.065 | 0.008    | 3       | 0.008  |      |       |  |
| Ryan's Commander          | 826129                                        | Crabber/Shrimper          | TSB M04N0086          | 19.79 | 7.315 | 3     | 2 2.56  | 5       | 117.8  | 4.176 | 0.792 | 2 0.  |           |       | 0.077    | 0.077   | 0.077  | 39.0 | 39.00 |  |

WOLFSON UNIT